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Dynamical Localization for the Random Dimer
Schro� dinger Operator
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We study the one-dimensional random dimer model, with Hamiltonian H|=
2+V| , where for all x # Z, V|(2x)=V|(2x+1) and where the V|(2x) are i.i.d.
Bernoulli random variables taking the values \V, V>0. We show that, for all
values of V and with probability one in |, the spectrum of H is pure point. If
V�1 and V{1�- 2, the Lyapunov exponent vanishes only at the two critical
energies given by E=\V. For the particular value V=1�- 2, respectively,
V=- 2, we show the existence of new additional critical energies at E=\3�- 2,
respectively, E=0. On any compact interval I not containing the critical
energies, the eigenfunctions are then shown to be semi-uniformly exponentially
localized, and this implies dynamical localization: for all q>0 and for all
� # l2(Z) with sufficiently rapid decrease

sup
t

r (q)
�, I(t) :=sup

t
(PI (H|) �t , |X | qPI (H|) �t) <�

Here �t=e&iH|t�, and PI (H|) is the spectral projector of H| onto the interval
I. In particular, if V>1 and V{- 2, these results hold on the entire spectrum
[so that one can take I=_(H|)].

KEY WORDS: Schro� dinger operator; dimer; random model; Anderson
localization; dynamical localization; Lyapunov exponent; delocalization.

1. INTRODUCTION

We study a one-dimensional discrete Schro� dinger operator, known as
the random dimer model, introduced in ref. 10. More precisely, the family
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of Hamiltonians H| (| # 0=[&1, 1]Z) that we consider is defined as
follows. For u # l2(Z),

(H| u)(x)=u(x&1)+u(x+1)+V|(x) u(x), x # Z (1.1)

where V|(2x+1)=V|(2x)=V|(x), and the (V|(2x))x # Z are independent
and identically distributed random variables, with P(V|(0)=&V )= p,
0<p<1 and V>0. Note that the on-site potential takes only two values
and takes the same value on pairs of sites, whence the name of the model
which has attracted considerable attention in the physics literature since it
seems to display an interesting localization-delocalization phenome-
non(10, 11, 12, 22) that we now briefly explain.

When V�1, it is easy to see that, due to a resonance phenomenon,
there is perfect transmission at two critical energies Ec=\V. In other
words, at these energies, the model has a delocalized eigenstate.(12) It is
then argued in ref. 10 that, when considering the model constrained to a
box of size N, the inverse localization length (Lyapounov exponent) of the
eigenfunctions behaves as #(E )t |E&Ec |2 (a result confirmed by a pertur-
bative calculation in refs. 3 and 12), such that roughly - N of the N eigen-
functions have a localization length of the order of the size of the box.
Using these observations on the eigenfunctions, the authors of ref. 10 argue
that (�t , X 2�t) behaves like t3�2 when �0 is a state initially localized at the
origin, a result they confirm with numerical computations. In other words,
according to those results, the random dimer model is a simple model in
which a diverging localization length at isolated energies in the band could
lead to superdiffusive behaviour.

This conclusion has been be contested on several grounds. It is argued
in ref. 17 that the behaviour in t3�2 is only a transient effect, that would dis-
appear if one explored (�t , X 2�t) numerically over much longer times
than was done in ref. 10. Their objections are essentially based on the way
the N � � and t � � limits are taken in ref. 10, and on the observation
that the fraction of delocalized states over localized states behaves as
1�- N , so that the role of the delocalized states may vanish in the infinite
lattice model. This latter argument is already proposed in ref. 19, in the
context of other, similar models.

Without settling the question of the t3�2 behaviour, we provide in this
letter some rigorous results on the random dimer model that should help
to clarify the situation. First, one expects that in the infinite model, what-
ever the value of V, the Hamiltonian has pure point spectrum with expo-
nentially localized eigenfunctions. Second, when V>1, the t3�2-behaviour
should be completely suppressed in the sense that supt(�t , X 2�t)<�,
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a property we refer to as ``dynamical localization''. This is indeed proven in
Theorem 2.3 (V{- 2).

It is furthermore agreed on by all authors that, in the case V<1, the
superdiffusive behaviour��if any��can only come from contributions of the
eigenstates close to the critical energies. We give a precise content to this
statement and a proof of it in Theorem 2.2.

To obtain these results, we proceed as follows. We first show that for
all energies E away from the critical energies, the corresponding eigenfunc-
tions are semi-uniformly exponentially localized (this notion is introduced
in ref. 8), i.e.:

|�E (x)|�C= exp |xE | = exp &#E |x&xE |

with =>0, where xE is a point where �E reaches its maximum and #E is the
(strictly positive) Lyapounov exponent. This, together with the results of
ref. 14 implies in turn dynamical localization. This result has been announced
in ref. 15.

We insist once again that our results do not imply the absence of the
superdiffusive behaviour observed by ref. 10 when the disorder is low
(V<1): we actually feel this model should indeed display such behaviour,
but to prove it requires lower bounds on the eigenfunctions close to the
critical energies, rather than the above upper bounds. It would be interest-
ing, since it would provide a random model with pure point spectrum in
which (�t , X 2�t) has a non-trivial lower bound at all times t.

We also exhibit the existence of new critical energies (in the sense that the
Lyapunov exponent vanishes) for the special values V=1�- 2 and V=- 2.
This is the content of Theorem 2.4. To our opinion, the nature of these energies
is different from the one of E=\V, and should not lead to a delocalization
phenomenon, but we did not prove this (see Section 3 for more details).

2. THEOREMS AND THE PROOF OF LOCALIZATION

We first rewrite the eigenvalue equation H| u=Eu as follows:

\u(x+1)
u(x) +=S E

V|(x) \ u(x)
u(x&1)+ , where S E

v =\E&v
1

&1
0 +

is the usual one-step transfer matrix. In the present case the structure of the
potential leads us to consider the two-step random transfer matrices
T E

v =(S E
v )2, i.e.:

T E
v =\(E&v)2&1

(E&v)
&(E&v)

&1 +

1137Dynamical Localization for the Random Dimer Schro� dinger Operator



Definition 2.1. We'll say that H| , as in (1.1), is dynamically
localized on a spectral interval I, iff with probability one, for all q>0 and
for all exponentially decaying initial states � # l2(Z):

sup
t

r (q)
�, I (t)=sup

t
(PI (H|) �t , |X |qPI (H|) �t)<�

Here �t=e&iH| t�, and PI (H|) is the spectral projector of H| onto the
interval I.

Our results are the following:

Theorem 2.2. Let (H|)| # 0 be as in (1.1) and V # ]0, 1]"[1�- 2].
Then, with probability 1 in | the Lyapounov exponent

#(E )= lim
x � �

1
|x|

ln &T E
V| (x)T

E
V| (x&1) } } } T E

V| (1)&

exists, is independent of |, and:

(i) #(E=\V )=0 and #(E{\V )>0;

(ii) H| has pure point spectrum;

(iii) Let =>0 and let I be a compact energy interval I/_(H|)=
[&V&2, V+2] with \V � I. Then, for all 0<#<#(I ) :=inf[#(E ), E # I ]
there exists a constant C(|, =, #) and, for each eigenfunction .n, | with
energy En, | # I, a ``center'' xn, | # Z, such that

\x # Z, |.n, |(x)|�C(|, =, #) e |xn, | |=e&# |x&xn, | | (2.2)

Moreover if � decays exponentially with mass %>0 and if q>0, there
exists a constant Cq, �, |(I ) so that:

sup
t

r (q)
�, I (t)�Cq, �, |(I ) P a.s. (2.3)

In particular, H| , is dynamically localized on I.

Remarks. (a) A careful analysis of Lemma 3.5 and 3.6 of ref. 14
shows that our estimate fails (i.e., C�, |(I) grows to infinity) if the distance
between I and the energies \V decreases (# � 0): this is of course as it
should be if one believes that the observed t3�2 does indeed occur.

(b) Actually one can get a stronger result than (2.3), namely
E|(supt r (q)

�, I(t))�Cq, �(I ), a property that one refers to as ``strong dynami-
cal localization''. Indeed it turns out that, as pointed out very recently by
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Damanik and Stollmann, (7) the core result of the multi-scale analysis
together with (2.2) does provide the strong dynamical localization. We also
refer the reader to ref. 16 for an even simpler argument.

These results are completed by the two following theorems:

Theorem 2.3. Let (H|)| # 0 be as in (1.1), V>1 and V{- 2.
Then, for almost all |, #(E ) exists and #(E )>0 for all E, the spectrum is
pure point and (iii) of Theorem 2.4 holds with I=_(H|)=[&V, V ]+
[&2, 2].

Theorem 2.4. Let (H|)| # 0 be as in (1.1) and V=- 2�2 (respec-
tively V=- 2). Then the same conclusions as in Theorem 2.2 (resp.
Theorem 2.3) hold except at the energies Ec=\3�- 2 (resp. Ec=0). In
particular (iii) hold for intervals I such that \V, \3�- 2 � I (resp. 0 � I ).
In addition Ec=\3 - 2�2 (resp. Ec=0) is a critical energy in the sense
that #(Ec)=0.

We shall prove Theorems 2.2 and 2.3 simultaneously in this section,
and then, in Section 3, we prove Theorem 2.4 which deals with the critical
couples (V=1�- 2, Ec=\3�- 2) and (V=- 2, Ec=0).

Proof of Theorems 2.2 and 2.3. From now on we shall work with
V{- 2 and V{1�- 2. That (2.2) implies (2.3) is not totally straight-
forward and requires some control on the behaviour of the centers of
localization xn, | as n � +�. We refer the reader to refs. 8 and 14.

To prove (2.2), it will be sufficient to show the strict positivity of the
Lyapunov exponent. Using Theorem 4.1 of ref. 4 with the transfer matrix
T E

v , this will indeed imply the Wegner estimate, which is the ingredient
needed to make the multiscale analysis function (see the Appendix of ref. 9,
or refs. 5 and 21). As a result, one can apply the proof of Theorem 3.1 in
ref. 14, or equivalently arguments developed in ref. 13, to conclude.

We stress that because of the singularity of our probability measure
(Bernoulli measure), the Aizenman�Molchanov approach(1) does not apply
in our case. That is why one has to use the multiscale analysis machinery,
and the proof of Dynamical Localization given in ref. 14.

We therefore turn to the proof of (i). We first recall it is well
known(2, 6) that thanks to the Furstenberg and Kesten Theorem the
Lyapunov exponent # is well defined on a set 00 of full measure, and is
independent of | # 00 .
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Consider first the energy E=V. The two possible transfer matrices are

T V
&V=\4V 2&1

2V
&2V
&1 + and T V

V=&Id

For | # 00 and x # N, let nx=>[ y # Z, 1� y�x, V|(2y)=&V ] (this is
the number of times &V is obtained after x trials). Using the following
three simple facts:

v P a.s. nx �x � p;

v limx � +� &(T V
&V )x&1�x=\(T V

&V ), where \(T V
&V ) denotes the spec-

tral radius of T V
&V ;

v \(T V
&V )=1, if V # ]0, 1], and \(T V

&V )<1 if V>1;

one immediately obtains that #(E=V )=0 if V # ]0, 1] and #(E=V )>0 if
V>1. One proceeds similary for the energy E=&V.

We now turn to the other energies E{ \V, and prove that
#(E{\V )>0 for all E belonging to the spectrum of H| . Let G be the
smallest closed subgroup of SL(2, R) generated by the matrices T E

V and
T E

&V . Recall that there is a natural action of SL(2, R) on P(R2), the set of
all the directions of R2. A matrix T # G is then seen as an homography
acting on P(R2). According to the Furstenberg Theorem (see Theorem I.4.4
of ref. 2), the conclusion will follow if G is not compact and if either there
is no probability measure on P(R2) that is invariant under the action
of G, or equivalently if the orbit G } x~ :=[T } x~ , T # G] of each direction
x~ # P(R2) contains at least three elements (Proposition I.4.3 in ref. 2).

In order to alleviate the notations, let's define :=E&V and
;=E+V. Note that in the present case :{0 and ;{0. We will also
rename T E

V=T: and T E
&V=T; , i.e.,

TX=\X 2&1
X

&X
&1 + with X=:, ;

We recall that a matrix T is said to be elliptic if |tr T |<2, parabolic if
|tr T |=2 and hyperbolic if |tr T |>2. The proof is reduced to the study of
three cases: (a) both the matrices T: and T; are elliptic; (b) T: is parabolic;
(c) T: is hyperbolic. These clearly cover all the possible cases since the
problem is symmetric in : and ;. Note that in cases (b) and (c) the group
G is clearly not compact.

Case (a). Suppose T: and T; are both elliptic, i.e., |:|, |;| # ]0, 2[.
In that case they do not commute, since E{V. Since the commutator
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T :=T:T;(T:)&1 (T;)&1 of two non-commuting elliptic elements is known
to be hyperbolic ( |tr T |>2)��see the proof of Proposition 2.8 in ref. 18��it
follows that G is not compact. We will show G } x~ contains at least three
points provided :2{2 or ;2{2.

To that end, note first that tr T 2
X=X 4&4X 2+2, so that if X 2 # ]0, 4[

and X 2{2, then T 2
X is elliptic. Hence, if :2{2 or ;2{2, then T: and T 2

:

or T; and T 2
; are elliptic. Since elliptic elements have no fixed points in

P(R2), it follows easily that for any x~ # P(R2), G } x~ contains at least the
three points x~ , TX } x~ and T 2

X } x~ , with X=: or ;.
If, on the other hand, :2=2 and ;2=2, then E=0 and V=- 2, which

is one of the two critical couples described in Theorem 2.4, and to be dealt
with in Section 3.

Case (b). Suppose now that T: is parabolic, i.e., |:|=2. We treat
the case :=2 (the case :=&2 is similar). The eigenvector of T: is then
given by (1, 1). Denoting by e2 the orthogonal vector (1, &1), the matrix
T: in the basis (e1 , e2) can be written

\1
0

4
1+ , and so \1

0
4
1+

n

=\1
0

4n
1 +

Taking a vector x=x1e1+x2e2 , and writing x~ for its direction (i.e., its
projection onto P(R2)), one concludes that limn � �T n

: } x~ =e1 (where T n
: is

seen here as a homography of P2(R)). But now, if m is a probability
measure that is invariant under the action of G, and if f # C �

0 (P(R2)),
using a Lebesgue dominated convergence argument, one has

f (e~ 1)= lim
n � � | f (T n

: } x~ ) dm(x~ )=(m, f )

This means that m=$e~ 1
. But now one uses the second matrix T; : it does

not leave invariant the direction e~ 1 except for ;=0 or ;=2=: (simple
check), which is excluded since the first condition yields E=&V and the
second one V=0. Thus we proved there is no invariant measure in case (b).

Case (c). Suppose now that T: is hyperbolic ( |:|>2). It is sufficient
to study the orbit of the eigendirections of T: , namely e==(:+= - :2&4, 2),
==\1. Note that T: and T; cannot have eigenvectors in common, since
it is easy to check that it would imply :=; (and V=0). Now, if T; is
hyperbolic then it is clear that the orbit of e= is infinite. If T; is parabolic
then we are again in case (b). Finally, if T; is elliptic then let's consider
X� :=T;e~ = . If X� {e~ &= then X� cannot belong to the eigendirections of T:

and its orbit is then infinite.
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Hence, the only case we still need to consider is the case where T; is
elliptic and exchanges these two directions (the orbit of these elements
would then have cardinal 2). In that case T; e= and e&= , ==\1, have the
same directions, and simple calculations lead to the two equations

(;2&1)(:+= - :2&4)=4;&(:&= - :2&4), ==\1

It trivially implies ;2=2 and :=2;, which means V=- 2�2 and
E=&3 - 2�2. The symmetric case where one assumes that T; is hyperbolic
leads naturally to :2=2 and ;=2:, which means this time V=- 2�2 and
E=3 - 2�2. Since, in Theorem 2.2 we have supposed V{- 2�2, the proof
is complete.

3. NEW CRITICAL CASES

We now consider the two special cases that haven't been studied
in the previous section and that are dealt with in Theorem 2.4, that is
(V=1�- 2, Ec=\3�- 2) and (V=- 2, Ec=0).

Proof of Theorem 2.4. It clearly follows from the previous proof
that the only thing that remains to be proven is that the Lyapunov expo-
nent is zero at the critical energies Ec . Note first that in all cases Ec belongs
to the spectrum of H| almost surely since d(&3 - 2�2, &1�- 2)=
d(3 - 2�2, 1�- 2)=d(0, \- 2)=- 2<2.

We first deal with the critical case (V=1�- 2, Ec=\3�- 2). The
second one will then be easier to treat.

(V=1�- 2, Ec=\3�- 2). Clearly it is enough to restrict ourselves
to the case Ec=&3�- 2. Using the notations and the results of the
previous proof, we thus have, in the present case, ;2=2 and :=2;. The
eigenvectors of T: are then given by (;+=, 1), ==\1, and looking
at the matrices in the basis of these two vectors we are reduced to con-
sidering products of matrices of the following two types:

\*1

0
0

*2+ and \ 0
1+;

1&;
0 +

with *1*2=1, *1>1 and (1&;)(1+;)=&1. With some abuse of nota-
tion, we will again denote those two matrices by T: and T; .

To prove that #(V=1�- 2, E=&3 - 2�2)=0, one has to analyse,
roughly speaking, the behaviour of large products of matrices T: and T; .
While the matrices T: contribute to the growth of the norm of such a
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product, the T; not only do not contribute (being a rotation) but in fact
``destroy'' this growth. Indeed one checks

T;T n
: T;=&\*n

2

0
0

*n
1+

and

T;T n2
: T;T n1

: =&\*n1&n2
1

0
0

*n1&n2
2 + (3.4)

since *1 *2=1 and (1&;)(1+;)=&1. Noting that T 2
;=&Id, a product

of factors T: and T; is, up to a sign, a succession of T ni
: and T; . One then

easily understands, from (3.4), that the norm of a product Tn } } } T1 may
not grow fast enough to ensure the positivity of the Lyapunov exponent.
This is exactly what we show below.

We will see a product Tn } } } T1 as a sequence of m(n) steps, where
m(n) is the number of matrices T: contained in the chain Tn } } } T1 ; in other
words a ``step'' means that one matrix T: has been met. So each step is a
product of matrices of the form T ji

; T: , with ji possibly zero. So Tn } } } T1

will be written >m(n)&1
i=0 (T ji

; T:). Looking at (3.7), it is clear that without
loss of generality one can suppose T1=T: . Then, obviously, depending on
the parity of ji , the i th step will contribute or not to the growth (in norm)
of the total product Tn } } } T1 .

More precisely, in order to study the product of elements of the form
T ji

; T: , we define two sequences uk # [0, 1] and Vk # Z such that, after k
steps,

`
k&1

i=0

(T ji
; T:)=\T uk

; T Vk
: (3.5)

This is clearly always possible using relations (3.4) and T 2
;=&Id. Now it

is easy to obtain recurrence relations for =(uk)=(&1)uk and Vk :

T uk+1
; T Vk+1

: =\(T jk
; T:) T uk

; T Vk
:

=\{T jk
; T Vk+1

T jk+1
; T Vk&1

:

if =(uk)=1
if =(uk)=&1

And this leads to

{Vk+1=Vk+=(uk)
=(uk+1)==( jk) =(uk)

(3.6)
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Then define =k==( jk&1) and Uk==(uk)==k } } } =1 , for k�1. So =k is a
sequence of independent and identically distributed random variables
taking the two values \1, and such that =k=+1 if one meets an even
(possibly zero) number of T; between the (k&1)th and the k th matrix T: ,
and =k=&1 if not. Let's recall that P(T:)=1& p and P(T;)= p. So one
has

P(=k=1)=(1& p)(1+ p2+ } } } )=
1& p
1& p2=

1
p+1

and

P(=k=&1)=(1& p)( p+ p3+ } } } )=
p(1& p)
1& p2 =

p
p+1

Moreover one checks E(=k)=(1& p)�(1+ p) # ]0, 1[ since p # ]0, 1[. Finally
let us rewrite Eq. (3.6) as

Uk= `
k

i=1

=i and Vm= :
m

k=1

Uk

To understand how these random sequences behave, note that Uk+1=
=k+1 Uk # [&1, 1]. So, if =k+1=1 then Uk+1+Uk=\2, but if =k+1=&1,
then Uk+1+Uk=0. As a result looking at the sum Vm , Uk+1 destroys
in the latter case the term before, and does not contribute to the growth
of Vm .

As a remark, note that one can actually prove from (3.6) that

P(Uk=1)=
1
2 \1+\1& p

1+ p+
k

+ and P(Uk=&1)=
1
2 \1&\1& p

1+ p+
k

+
This should be compared to the easier case (V=- 2, Ec=0) below, where
the process Uk turns out to be i.i.d.

By construction Vm in turn is closely related to the exponential growth
of the product Tn } } } T1 , as one can see from the following formula:

ln &Tn } } } T1&=ln " `
m(n)&1

i=0

T ji
;T:"=ln &T u m(n)

; T Vm(n)
: &

�|Vm(n) | ln *1+ln &T;& (3.7)
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Since, by the Furstenberg and Kesten Theorem, (2, 6) # exists almost surely
and is constant, and since (1�n) ln &Tn } } } T1&�max(&T:&, &T;&), the
Lebesgue dominated convergence Theorem gives

#=E( lim
n � �

ln &Tn } } } T1&�n)�ln *1 lim
n � �

E( |Vm(n) |�n)

It remains to evaluate the latter limit. Computing V 2
m(n) one obtains that

V 2
m(n)= :

m(n)

k=1

U 2
k+2 :

1�k<l�m(n)

UkUl

=m(n)+2 :
1�k<l�m(n)

=k+1 } } } =l (3.8)

since =2
k=1. Moreover, using the independence of the =i , one has E(Uk Ul)=

E(=1) |k&l |; but m(n) does also depend on | (write m(n, |)). So one needs
some control on how m(n, |) depends on |. This is provided by the
following lemma, which just recalls well-known results about Bernoulli
random variables.

Lemma 3.1 (e.g., ref. 20). Let m(n, |) be the number of T: con-
tained in the product Tn(|) } } } T1(|). One has

mn :=E(m(n, |))=(1& p) n

and

Var (m(n, |))=E[(m(n, |)&mn )2]= p(1& p) n.

An immediate consequence of this lemma is that

E[(m(n, |)&[mn ])2]tp(1& p) n as n � � (3.9)

where [mn ] denotes the integer part of mn . Then the result follows from

E( |Vm(n) |�n)�
1
n

E( |Vm(n, |)&V[mn] | )+
1
n

E( |V[mn] | )

�
1
n

- E((m(n, |)&[mn ])2)

+
1
n

- [mn ]+2 :
1�k<l�[mn]

E(=1) |k&l |�
C

- n
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for some constant C>0, where we used, successively, the Cauchy�Schwarz
inequality, relations (3.8) and (3.9), and the facts that E(=1)<1 and
[m� ]�n. In conclusion it follows that E(#(E=&3 - 2�2))=0.

We now turn to the second special case.

(V=- 2, Ec=0). So :=&;=\- 2 and let us recall that in this
case

T 2
:=T 2

;=&Id (3.10)

We shall follow the idea of the previous case, but the arguments are much
simpler. Regrouping all the powers of T: and T; that appear in the product
of the n first matrices Tn } } } T1 and taking (3.10) into account, the product
Tn } } } T1 can be reduced (essentially) to some power Vn of the matrix T: T;

which is hyperbolic. This would then lead to a strictly positive Lyapunov
exponent (since the spectral radius of T:T; is strictly greater than 1) if Vn

and n had the same order, which is however not the case.
Let us consider groups of two matrices in the product Tn } } } T1 . Then

it is easy to see that one can define a sequence Vk with V0=0 and

T2k } } } T1=(T:T;)Vk

Depending on the values of T2k+2 and T2k+1 and noting that (T: T;)&1

=T; T: one has

P(Vk+1=Vk+1)= p(1& p)=P(Vk+1=Vk&1)

and

P(Vk+1=Vk)= p2+(1& p)2 (3.11)

This situation is different from the previous one where the way the value
of Vk changed (between the k th and (k+1)th steps) was depending on
what happened before. So let us define Uk=Vk+1&Vk . It is (unlike
before) an i.i.d. random sequence the law of which is given by (3.11). One
easily computes E(Uk)=0 and E(U 2

k)=2p(1& p). It is then immediate that

E(V 2
n)= :

n

k=1

E(U 2
k)+2 :

1�k<l�n

E(Uk Ul )

=2np(1& p)

since E(Uk Ul )=E(Uk) E(Ul )=0 for l{k. The result then follows in the
same way as previously. K
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Remark. The situation is, to our opinion, different from the one we
met with the critical energies E=\V. It is worth noticing that if E=\V
then limn � +�(1�n&) ln &Tn } } } T1&=0 for all &>0, since it is easy to see
that in this case &Tn } } } T1& is bounded independently of n. We conjecture
that this is not the case at the critical couples (V=1�- 2, Ec=\3�- 2)
and (V=- 2, Ec=0), where for &<1�2 the limit should be most likely
infinite (and zero for &>1�2). If so it is reasonable to think that the eigen-
functions with energy E close to Ec should decay sub-exponentially (semi-
uniformly) as exp &#(E ) n& (&<1�2). This would still imply dynamical
localization even on a spectral interval containing the critical energy Ec .
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